

Restorelle®

PELVIC ORGAN PROLAPSE REPAIR

Restorelle®

In 2001, urogynecologist Dr. James Browning began to develop a new mesh product for the treatment of pelvic organ prolapse. What was created was Restorelle, a physiologically compatible, ultra lightweight mesh that supports collagen growth and works in concert with the patient's own tissue for optimum safety and efficacy. It restores a woman's body, as well as renews her quality of life.¹

DESIRABLE FEATURES

of PROLAPSE MESH

Tissue In-growth

Restorelle is designed to improve patient outcomes

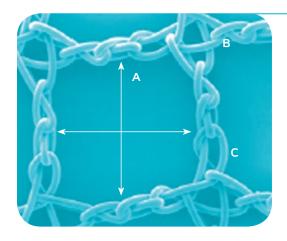
Lighter weight meshes with higher porosity and lower stiffness usually achieve more favorable host responses and tissue in-growth compared with heavier-weight meshes with lower porosity and higher stiffness.²

Manufacturer ²	Weight (g/m²)	Pore Size (mm²)	Porosity (%)	Stiffness (N/mm)
Coloplast	19	3.24	78	0.18
Boston Scientific	25	2.8	72	0.2
Ethicon	42	N/A	62	0.29
Caldera ⁵	21	2.25	N/A	N/A

Restorelle® vs. a Heavier Mesh3

Backed by scientific and clinical data, Restorelle encourages tissue healing properties and collagen ingrowth without inducing fibrosis and foreign body reactions.¹

In a canine integration histology study, two types of monofilament polypropylene mesh were compared with different pore sizes, mass densities, and burst strengths.


- 71% more mature type 1 collagen growth
- Less fibrosis
- Less chronic inflammation and foreign body complications
- Post-implant strength of Restorelle was as strong or stronger than the heavier-weight mesh

Stability

Restorelle is stable with minimal loss of porosity at 1 lb/cm¹

Maintaining the stability of mesh pore geometry under loading conditions is important to prevent mesh deformation, such as mesh shrinking, wrinkling, buckling and/or folding, when implanted *in vivo*.²

Manufacturer ¹	At Rest	1 lb/cm
Coloplast		
Boston Scientific		
Ethicon		
Caldera		

Patented Polypropylene Design

Constructed with uniform 1.8 mm macropores and 100 micron interstitial pores. 80 micron fibers¹ – less than an average human hair.⁴

- A: 1.8 mm macropores
- B: 100 micron interstitial pores
- C: 80 micron fiber

References

- Data on file with Coloplast.
 Liang, Knight, Abramowitch, and Moalli. Exploring the basic science of prolapse meshes; Curr Opin Obstet Gynecol 2016; 28:412-419.
- Claring, Anight, Abrumowitch, and Moduli. Exploring the Data Science of prolapse Heisries, Carr Opin Obstet Gyneto 2018, 28:412-43.
 Greca, Souza-Filho, Giovanini, Rubin, Kuenzer, Reese, and Araujo. The influence of porosity on the integration histology of two polypropylene meshes for the treatment of abdominal wall defects in dogs. Hernia 2008; 12: 45-49.
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663634/. Downloaded 1/2018.
 https://calderamedical.com/medical-professionals/products/vertessa-lite-polypropolene-mesh-for-scp/. Downloaded 5/2018.

Ostomy Care Continence Care Wound & Skin Care Urology Care

